
UNIVERSAL GRÖBNER BASES AND CARTWRIGHT–STURMFELS IDEALS

ALDO CONCA

We will discuss a family of multigraded ideals, that we name after Cartwright and
Sturmfels, defined in terms of properties of the multigraded generic initial ideals. Indeed,
by definition, a multigraded ideal I is a Cartwright–Sturmfels ideal if it has a radical
multigraded generic initial ideal. Our main technical result asserts that the family of
Cartwright–Sturmfels ideals is closed under several natural operations including multi-
graded linear sections and multigraded eliminations. Connection to universal Gröbner
bases for determinantal ideals, algebras associated to graphs, subspaces configurations
and multiview varieties will be discussed. We will also present a “rigidity” conjecture
suggested by a theorem of Brion.

This is a report on a joint work with Emanuela De Negri and Elisa Gorla that appeared
in a series of four papers we wrote together:
[1] Universal Gröbner bases for maximal minors.
Int. Math. Res. Not. (2015), no. 11, 3245–3262.
[2] Universal Gröbner bases and Cartwright-Sturmfels ideals
preprint 2016, arXiv:1608.08942
[3] Multigraded generic initial ideals of determinantal ideals
preprint 2016, arXiv:1608.08944
[4] Cartwright-Sturmfels ideals associated to graphs and linear spaces
preprint 2017, soon on arxiv.



FINITE GENERATION OF EXTENSIONS OF ASSOCIATED GRADED
RINGS ALONG A VALUATION

STEVEN DALE CUTKOSKY

Suppose that K is a field. Associated to a valuation ν of K is a value group Φν and a
valuation ring Vν with maximal ideal mν . Let R be a local domain with quotient field K
which is dominated by ν . We have an associated semigroup SR(ν) = {ν( f ) | f ∈ R}, as
well as the associated graded ring of R along ν

grν(R) =
⊕

γ∈Φν

Pγ(R)/P+
γ (R) =

⊕

γ∈SR(ν)
Pγ(R)/P+

γ (R)

which is defined by Teissier in [3]. Here

Pγ(R) = { f ∈ R | ν( f )≥ γ} and P+
γ (R) = { f ∈ R | ν( f )> γ}.

This ring plays an important role in local uniformization of singularities ([3] and [4]). The
ring grν(R) is a domain, but it is often not Noetherian, even when R is.

Suppose that K∗ is a finite separable extension of K and ν∗ is an extension of ν to K∗.
In this talk we consider the question of when the associated graded ring along a valu-

ation, grν∗(S), is a finite grν∗(R)-module, where S is the normal local ring of K which is
the localization of the integral closure of R in K∗ at the center of ν∗.

We begin by discussing some examples and results allowing us to refine the conditions
under which finite generation can hold. We must impose the condition that the extension
of valuations is defectless and perform a birational extension of R along the valuation to
obtain finite generation (replacing S with the local ring of K∗ determined by the valu-
ation). With these assumptions, we show that finite generation holds, when R is a two
dimensional excellent local ring.

Our main result (in [2]) is to show that for an arbitrary valuation in an algebraic func-
tion field over an arbitrary field of characteristic zero, after a birational extension along
the valuation, we always have finite generation (all finite extensions of valued fields are
defectless in characterisitic zero). This generalizes an earlier result, [1], showing that fi-
nite generation holds (after a birational extension) with the additional assumptions that ν
has rank 1 and has an algebraically closed residue field. We discuss some of the difficul-
ties involved in extending this result to arbitrary rank. As an ingredient in the proof, we
obtain general results for unramified extensions of excellent local rings.
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MYSTERIES OF FREE RESOLUTIONS OVER COMPLETE
INTERSECTIONS

DAVID EISENBUD

Despite recent progress in understanding the free resolution of a finitely generated mod-
ule M over a complete intersections R (work of mine with Irena Peeva, Frank Schreyer
and others) there remain many open questions. I’ll review the new structure theorems,
and survey some of these questions.



ASYMPTOTIC SYZYGIES

DANIEL ERMAN

I’ll discuss some new computational and theoretical results related to asymptotic syzy-
gies. For instance, I’ll explain how we can use random monomial ideals to provide an
example of a family of ideals where the Betti numbers converge to a normal distribution.
This is joint work with Jay Yang.



ON A STRATIFICATION OF COHEN–MACAULAY RINGS

SHIRO GOTO

My lecture is based on the work jointly with S. Kumashiro [3] and purposes to give
a survey on generalized Gorenstein local rings. The generalization of Gorenstein local
rings in my sense dates back to the paper of V. Barucci and R. Fröberg [1] in 1997, where
they introduced the notion of an almost Gorenstein local ring (AGL for short) to one
dimensional analytically unramified local rings. In 2013, the author, N. Matsuoka, and T.
T. Phuong [5] gave a new definition of an AGL ring for arbitrary but still one-dimensional
Cohen-Macaulay local rings. This research has been succeeded by two works of T. D. M.
Chau, the author, S. Kumashiro, N. Matsuoka [2], and the author, R. Takahashi, and N.
Taniguchi [11] in 2017 and 2015, respectively. In the former work, one can find the notion
of a 2-almost Gorenstein local ring (2-AGL ring for short) of dimension one, which is a
natural generalization of AGL rings. Using Sally modules of canonical ideals, the authors
show that 2-AGL rings behave well as if they were twins of AGL rings. The latter research
started in a different direction. They have extended the notion of an AGL ring to higher
dimensional Cohen-Macaulay local/graded rings, using the notion of Ulrich modules with
respect to the maximal ideal. Researches on AGL rings are in progress, exploring, e.g.,
the problem of when the Rees algebras of ideals/modules are almost Gorenstein graded
rings ([4, 6, 7, 8, 9, 10]). The present purpose is to report one more notion, which I
would like to call a generalized Gorenstein local ring (GGL for short), and which might
be a more reasonable stratification of Cohen-Macaulay rings, including the whole class
of AGL rings and a part (not the whole class) of 2-AGL rings.
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ORDINARY AND SYMBOLIC POWERS AND THE GOLOD PROPERTY

JÜRGEN HERZOG

Let R be a standard graded K-algebra with graded maximal ideal m. The formal power
series PR(t) = ∑i≥0 dimK Tori(R/m,R/m)ti is called the Poincaré series of R. In general,
PR(t) is not a rational series. However, Serre showed that PR(t) is coefficientwise bounded
above by the rational series

(1+ t)n

1− t ∑i≥1 dimK Hi(x;R)ti ,

where x = x1, . . . ,xn is a minimal system of generators of m and where Hi(x;R) denotes
the ith Koszul homology of the sequence x.

The ring R is called Golod, if PR(t) coincides with this upper bound given by Serre.
Obviously the residue field of a Golod ring has a rational Poincaré series.

Suppose R = S/Ik, where S = K[x1, . . . ,xn] is the polynomial ring over a field K and I
is a graded ideal. In this lecture we report on a joint result with Craig Huneke, in which
we show that if the characteristic of K is zero, then R is Golod for all k ≥ 2. The same
holds true for the symbolic and saturated powers of I. However the corresponding result
in positive characteristic is still open. Only recently, in a joint paper with Maleki, we
showed that S/Ik is Golod in all characteristics if I is a monomial ideal. A local version
of the theorem is also missing.

The method to derive the above mentioned results is based on an explicit description
of the Koszul cycles representing the homology classes of Hi(x;R). This description is
given in terms of the data provided by the minimal free S-resolution of R = S/I.
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GEIGLE-LENZING COMPLETE INTERSECTIONS
AND TATE RESOLUTIONS

OSAMU IYAMA

Let d ≥−1 and n ≥ 0 be integers. For positive integers p1, . . . , pn, we define a Geigle-
Lenzing complete intersection [3] as

S := k[T0, . . . ,Td,X1, . . . ,Xn]/(X
pi
i − ℓi(T0, . . . ,Td) | 1 ≤ i ≤ n),

where ℓ1, . . . ,ℓn are linear forms on T0, . . . ,Td in a general position. The ring S has Krull
dimension d +1, and is canonically graded by an abelian group

L := ⟨⃗c, x⃗1, . . . , x⃗n⟩/⟨pi⃗xi − c⃗ | 1 ≤ i ≤ n⟩
of rank 1 by degXi = x⃗i for 1 ≤ i ≤ n and degTj = c⃗ for 0 ≤ j ≤ d.

In the case d = 1, the representation theory of S was initiated by Geigle-Lenzing [2] as
a large extension of Auslander’s results on simple surface singularities [1].

I will discuss the category CMLS of L-graded maximal Cohen-Macaulay S-modules
for arbitrary d. We need the a-invariant and the dominant element given by

ω⃗ = (n−d −1)⃗c−
n

∑
i=1

x⃗i and δ⃗ = d⃗c+2ω⃗ respectively.

A main result in [3] is the following, where mod[0,⃗δ ]S is the category of finitely generated
L-graded S-modules X which are concentrated in degrees in the interval [0, δ⃗ ].
Theorem [3] There is an equivalence of triangulated categories

CMLS ≃ Db(mod[0,⃗δ ]S).

The abelian category mod[0,⃗δ ]S is equivalent to the category of finitely generated mod-
ules over a finite dimensional k-algebra A, an analogue of Ringel’s canonical algebra.

In this talk, I will give an explicit formula of their global dimension. This provides
us with a family of S which are d-Cohen-Macaulay finite. A crucial step is to give an
L-graded version of Tate’s DG algebra resolution for complete intersection rings [4].
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ATOM-MOLECULE CORRESPONDENCE AND CLASSIFICATION OF
SUBCATEGORIES FOR LOCALLY NOETHERIAN SCHEMES

RYO KANDA

For a commutative noetherian ring, prime ideals bijectively correspond to isoclasses
of indecomposable injectives, which is a result due to Matlis. For a noncommutative
noetherian ring, isoclasses of indecomposable injectives and prime (two-sided) ideals do
not necessarily correspond bijectively, but there still exist canonical maps between them,
which were introduced by Gabriel [Gab62]. In this talk, we establish Gabriel’s maps
in a more general setting, and show that the bijectivity of those maps still holds for the
category QCohX of quasi-coherent sheaves on an arbitrary locally noetherian scheme X .

We will work on a Grothendieck category, which is a generalization of both the category
of modules over a noncommutative ring and the category of quasi-coherent sheaves on a
scheme. We introduce the notions of atoms and molecules in the Grothendieck category.
They are reformulations of indecomposable injectives and prime ideals. The relationship
between atoms and molecules is more direct than that between injectives and primes, and
this reformulation reveals some strong connections between these two notions even in the
case of the module category of a noncommutative noetherian ring.

For a locally noetherian scheme, we show that atoms and molecules bijectively corre-
spond to each other. Moreover, they also correspond to certain classes of subcategories:

Theorem 1. Let X = (|X |,OX) be a locally noetherian scheme. Then the following col-
lections bijectively correspond to each other:

• points of the underlying space |X |,
• isomorphism classes of indecomposable injective objects in QCohX,
• atoms in QCohX,
• molecules in QCohX,
• prime localizing subcategories of QCohX,
• prime closed subcategories of QCohX, and
• prime quasi-coherent subsheaves of the structure sheaf OX .

The proof uses the classification of subcategories given in [Kan15].
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ON THE RELATION BETWEEN REPRESENTATION THEORY AND HIBI
RINGS

SANGJIB KIM

I will give a survey on the relation between representation theory and Hibi rings. Re-
cently, Hibi rings and distributive lattices have been studied extensively in the context
of finite dimensional representations of reductive complex algebraic groups. With some
explicit examples, I will illustrate how Hibi rings and combinatorial objects associated
with them can be used to describe representation theoretic information of certain invari-
ant rings. This is based on a series of joint works with Roger Howe and Soo Teck Lee.
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[3] S. Kim and S. T. Lee, Pieri algebras for the orthogonal and symplectic groups. Israel J. Math. 195
(2013), no. 1, 215–245.

[4] S. Kim, Distributive lattices, affine semigroups, and branching rules of the classical groups. J. Combin.
Theory Ser. A 119 (2012), no. 6, 1132–1157.



INFINITELY GENERATED SYMBOLIC REES RINGS OF SPACE
MONOMIAL CURVES HAVING NEGATIVE CURVES

KAZUHIKO KURANO

This is a joint work [7] with Koji Nishida (Chiba University).
Let K be a field and S = K[x,y,z] be a polynomial ring with three variables. Let

pK(a,b,c) be the ideal of S which defines the space monomial curve (ta, tb, tc) for pairwise
coprime integers a, b, c(i). My interest is whether the symbolic Rees ring

Rs(pK(a,b,c)) =⊕i≥0pK(a,b,c)(n)T n ⊂ S[T ]

is finitely generated or not. Remember that pK(a,b,c) is an ideal of height 2, and gener-
ated by at most three elements (Herzog [5]).

The symbolic Rees rings of space monomial primes are deeply studied by many au-
thors. Huneke [6] gave a criterion for finite generation of Rs(pK(a,b,c)).

Cutkosky [1] found the geometric meaning of the symbolic Rees rings of space mono-
mial primes. Let PK(a,b,c) be the weighted projective surface with degree a, b, c. Let
π : XK(a,b,c) −→ PK(a,b,c) be the blow-up at the point corresponding to pK(a,b,c).
Then, the Cox ring of XK(a,b,c) is equal to the extended symbolic Rees ring of the
space monomial prime pK(a,b,c). Therefore, the symbolic Rees ring of the space mono-
mial prime pK(a,b,c) is finitely generated if and only if the Cox ring of XK(a,b,c) is
finitely generated, that is, XK(a,b,c) is a Mori dream space. A curve C on XK(a,b,c)
is called the negative curve if C2 < 0 and C is different from the exceptional curve E.
Now suppose

√
abc ̸∈Q for simplicity(ii). Cutkosky [1] proved that Rs(pK(a,b,c)) is

finitely generated if and only if the following two conditions are satisfied:
(1) There exists a negative curve C.
(2) There exists a curve D on XK(a,b,c) such that C∩D = /0.

Two equations defining π(C) and π(D) as above satisfy Huneke’s criterion. Let f be an
irreducible polynomial which defines π(F) for a curve F on XK(a,b,c). Let d be the
degree of f . Let r be the integer satisfying f ∈ pK(a,b,c)(r) \pK(a,b,c)(r+1). Then, F is
a negative curve if and only if d/r <

√
abc.

If pK(a,b,c) is generated by two elements, then the symbolic power coincides with the
ordinary power. So, Rs(pK(a,b,c)) is finitely generated in this case.

In the rest, suppose that pK(a,b,c) is minimally generated by three polynomials(iii).
As long as I know, there is no example that XK(a,b,c) does not have a negative curve.

If XK(a,b,c) did not have a negative curve for some field K, then Nagata conjecture for
abc points would be true [2], that is, if a curve of degree d is passing through general abc
points in P2

C with multiplicity at least r at each abc points, then d >
√

abcr.
In the case where the characteristic of K is positive, Cutkosky [1] proved that the sym-

bolic Rees ring Rs(pK(a,b,c)) is finitely generated if and only if there exists a negative



curve on XK(a,b,c). There is no example that Rs(pK(a,b,c)) is infinitely generated when
the characteristic of K is positive.

In th rest, we assume that the characteristic of K is zero(iv). There are many examples
of finitely generated Rs(pK(a,b,c)). However, the first example of infinitely generated
Rs(pK(a,b,c)) was given by Goto-Nishida-Watanabe [4], for example, Rs(pK(25,29,72)).
Recently Gonzáles-Karu [3] found some sufficient condition for infinite generation of the
symbolic Rees ring Rs(pK(a,b,c)). In these examples, the element of pK(a,b,c) with
minimal degree is the equation of the image of the negative curve.

In the rest, we assume that the element in pK(a,b,c) with minimal degree, say zu − xs3yt3 ,
is the equation of the image of the negative curve(v).

Remark that, under these assumptions, the symbolic Rees ring Rs(pK(a,b,c)) is finitely
generated if and only if there exists η ′ ∈ [pK(a,b,c)eab]eu such that zu − xs3yt3 , η ′ satisfy
Huneke’s criterion for some sufficiently divisible e.

Our following main theorem says that we have only to check the case e = 1.
Theorem Under these assumptions (i), (ii), (iii), (iv), (v) as above, the symbolic Rees ring
Rs(pK(a,b,c)) is finitely generated if and only if there exists η ∈ [pK(a,b,c)ab]u such that
zu − xs3yt3 , η satisfy Huneke’s criterion.

This result says that the symbolic Rees ring Rs(pK(a,b,c)) is finitely generated if and
only if there exists a curve D with C∩D = /0 such that D.E = u.

By this result, under these assumptions, we can decide whether the symbolic Rees ring
is Notherian using computers.

For example, (17,503,169) does not satisfy the sufficient condition for infinite genera-
tion due to Gonzáles-Karu [3]. However, we know that the symbolic Rees ring is infinitely
generated by the above theorem and calculation using computers.

In order to prove the above theorem, we need Cutkosky’s method [1] in characteristic
positive, Fujita’s vanishing theorem, and mod p reduction introduced in Goto-Nishida-
Watanabe [4]. The key point is that the negative curve is isomorphic to P1

K in this case.

Furthermore, under these assumptions, we give a very simple necessary and sufficient
condition for finite generation of symbolic Rees rings Rs(pK(a,b,c)) when u ≤ 6.
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DEGREE BOUNDS FOR LOCAL COHOMOLOGY

CLAUDIA POLINI

In this talk I will show how to estimate degrees of generators of local cohomology
modules. I will also survey several applications to Rees algebras, to hyperplane sections,
and to symbolic powers. This is joint work with Andy Kustin and Bernd Ulrich.



GRADED COMPONENTS OF LOCAL COHOMOLOGY MODULES

TONY J. PUTHENPURAKAL

Standard Assumption: From henceforth A will denote a regular ring containing a field
of characteristic zero. Let R = A[X1, . . . ,Xm] be standard graded with degA = 0 and
degXi = 1 for all i. We also assume m ≥ 1. Let I be a homogeneous ideal in R. Set
M = Hi

I(R). It is well-known that M is a graded R-module. Set M =
⊕

n∈ZMn.
I: (Vanishing:) The first result we prove is that vanishing of almost all graded compo-

nents of M implies vanishing of M. More precisely we show

Theorem I: If Mn = 0 for all |n|≫ 0 then M = 0.
II (Tameness:) In view of Theorem I, it follows that if M = Hi

I(R) =
⊕

n∈ZMn is non-
zero then either Mn ̸= 0 for infinitely many n ≪ 0, OR, Mn ̸= 0 for infinitely many n ≫ 0.
We show that M is tame. More precisely

Theorem II
(a) The following assertions are equivalent:

(i) Mn ̸= 0 for infinitely many n ≪ 0.
(ii) Mn ̸= 0 for all n ≤−m.

(b) The following assertions are equivalent:
(i) Mn ̸= 0 for infinitely many n ≫ 0.

(ii) Mn ̸= 0 for all n ≥ 0.
III (Rigidity:) Surprisingly non-vanishing of a single graded component of M = Hi

I(R)
is very strong. We prove the following rigidity result:

Theorem III
(a) The following assertions are equivalent:

(i) Mr ̸= 0 for some r ≤−m.
(ii) Mn ̸= 0 for all n ≤−m.

(b) The following assertions are equivalent:
(i) Ms ̸= 0 for some s ≥ 0.

(ii) Mn ̸= 0 for all n ≥ 0.
(c) (When m ≥ 2.) The following assertions are equivalent:

(i) Mt ̸= 0 for some t with −m < t < 0.
(ii) Mn ̸= 0 for all n ∈ Z.

IV (Infinite generation:) We give a sufficient condition for infinite generation of a
component of graded local cohomology module over R.

Theorem IV Further assume A is a domain. Assume I ∩A ̸= 0. If Hi
I(R)c ̸= 0 then

Hi
I(R)c is NOT finitely generated as an A-module.



V (Bass numbers:) The jth Bass number of an A-module E with respect to a prime
ideal P is defined as µ j(P,E) = dimk(P) Ext j

AP
(k(P),EP) where k(P) is the residue field of

AP. We note that if E is finitely generated as an A-module then µ j(P,E) is a finite number
(possibly zero) for all j ≥ 0. In view of Theorem IV it is not clear whether µ j(P,Hi

I(R)n)
is a finite number. Surprisingly we have the following dichotomy:

Theorem V Let P be a prime ideal in A. Fix j ≥ 0. EXACTLY one of the following
hold:

(i) µ j(P,Mn) is infinite for all n ∈ Z.
(ii) µ j(P,Mn) is finite for all n ∈ Z.

VI ( Growth of Bass numbers). Fix j ≥ 0. Let P be a prime ideal in A such that
µ j(P,Hi

I(R)n) is finite for all n ∈ Z. We may ask about the growth of the function n )→
µ j(P,Hi

I(R)n) as n →−∞ and when n →+∞. We prove

Theorem VI Let P be a prime ideal in A. Let j ≥ 0. Suppose µ j(P,Mn) is finite for all
n ∈ Z. Then there exists polynomials f j,P

M (Z),g j,P
M (Z) ∈Q[Z] of degree ≤ m−1 such that

f j,P
M (n) = µ j(P,Mn) for all n ≪ 0 AND g j,P

M (n) = µ j(P,Mn) for all n ≫ 0.
VII (Associate primes:) For associate primes of graded components of local cohomol-

ogy modules we prove:

Theorem VII Further assume that either A is local or a smooth affine algebra over a
field K of characteristic zero. Let M = Hi

I(R) =
⊕

n∈ZMn. Then
(1)

⋃
n∈Z AssAMn is a finite set.

(2) AssAMn = AssAMm for all n ≤−m.
(3) AssAMn = AssAM0 for all n ≥ 0.

VIII (Dimension of Supports and injective dimension:) Let E be an A-module. Let
in jdimAE denotes the injective dimension of E. Also SuppAE = {P |EP ̸= 0 and P is a prime in A}
is the support of an A-module E. By dimA E we mean the dimension of SuppAE as a sub-
space of Spec(A). We prove the following:

Theorem VIII Let M = Hi
I(R) =

⊕
n∈ZMn. Then we have

(1) in jdimMc ≤ dimMc for all c ∈ Z.
(2) in jdimMn = in jdimM−m for all n ≤−m.
(3) dimMn = dimM−m for all n ≤−m.
(4) in jdimMn = in jdimM0 for all n ≥ 0.
(5) dimMn = dimM0 for all n ≥ 0.
(6) If m ≥ 2 and −m < r,s < 0 then

(a) in jdimMr = in jdimMs and dimMr = dimMs.
(b) in jdimMr ≤ min{ in jdimM−m, in jdimM0}.
(c) dimMr ≤ min{dimM−m,dimM0}.



REGULARITY OF DETERMINANTAL THICKENINGS

CLAUDIU RAICU

We consider the ring S = C[xi j] of polynomial functions on the vector space Cm×n of
complex m× n matrices. We let GL = GLm(C)×GLn(C) and consider its action via
row and column operations on Cm×n (and the induced action on S). The GL-invariant
ideals I ⊆ S have been classified and studied in the 80s, in work of De Concini, Eisenbud
and Procesi [2]. In our work, for any such invariant ideal and for every j ≥ 0 we com-
pute the decomposition of the modules Ext j

S(S/I,S) into irreducible GL-representations.
Moreover, for any inclusion I ⊇ J of GL-invariant ideals we determine the kernels and
cokernels of the induced maps Ext j

S(S/I,S) −→ Ext j
S(S/J,S), the study of which was

motivated by work of Bhatt, Blickle, Lyubeznik, Singh and Zhang [1].
In my talk I plan to discuss two consequences of this work:

• I will explain how to determine the regularity of the powers and symbolic powers
of generic determinantal ideals, and in particular I will characterize which powers
have a linear minimal free resolution.

• I will characterize the GL-invariant ideals I ⊆ S for which the induced maps
Ext j

S(S/I,S) −→ H j
I (S) are injective, providing a partial answer to a question of

Eisenbud, Mustaţă, and Stillman [3, Question 6.2].
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NORMAL HILBERT POLYNOMIALS

MARIA EVELINA ROSSI

In this talk we present a survey on the normal Hilbert coefficients of m-primary ideals
of an analitically unramified Cohen–Macaulay ring A of dimension d. Most studies on
this topic aim to extend the celebrated result by J. Lipman on a two-dimensional rational
singularity. The papers by S. Itoh on the integral closures of ideals generated by regular
sequences inspired recent results obtained jointly with A. Corso, K. Ozeki and C. Polini.
In particular we give information on the first Hilbert coefficient which is strictly related to
the geometric genus of A and we discuss interesting steps toward a conjecture by S. Itoh
on the third Hilbert coefficient.



BALANCING IN RELATIVE CANONICAL RESOLUTIONS AND A
UNIRATIONAL MODULI SPACE OF K3 SURFACES

FRANK-OLAF SCHREYER

I report on work of two of my students: Christian Bopp and Michael Hoff. Given a
curve C of genus g together with a rational function f : C → P1 of degree d the canonical
model lies on a rational normal scroll X , and the resolution of OC as an OX module is
build with certain vector bundle Ni on P1. It is interesting to ask whether the splitting
type of the Ni is balanced for a general pair (C, f ), since then jump loci lead to interesting
subspaces of the Hurwitz scheme Hg,d . By experiment Bopp and Hoff discovered that the
second syzygy bundle N2 is not balanced for (g,d) = (9,6) for finite fields. In the talk I
will explain how their proof in characteristic zero builds upon a moduli space of certain
lattice polarized K3 surfaces.



TEST IDEALS IN MIXED CHARACTERISTIC AND APPLICATIONS

KARL SCHWEDE

We will discuss some recent usage of Scholze’s theory of perfectoid spaces in the
study of singularities in mixed characteristic. One application that we will cover is uni-
form growth of symbolic powers of ideals in regular rings analogous to results of Ein–
Lazarsfeld–Smith and Hochster–Huneke in characteristic zero and p respectively. This is
joint work with Linquan Ma.



WEAK COMPLETE INTERSECTION IDEALS

JANET STRIULI

In this talk we will define a weak complete intersection ideal as an ideal with the prop-
erty that every differential in their minimal free resolutions can be represented by a matrix
whose entries are in the ideal itself. We extend several homological formulas that hold for
the maximal ideal to weak intersection ideals.



LOCAL RINGS WITH QUASI-DECOMPOSABLE MAXIMAL IDEALS AND
CLASSIFICATION OF THICK SUBCATEGORIES

RYO TAKAHASHI

A thick subcategory of a triangulated category is by definition a full triangulated sub-
category closed under direct summands. Classifying thick subcategories of a triangulated
category is one of the most important problems shared by homotopy theory [3, 5], ring
theory [7, 10], algebraic geometry [9, 11] and representation theory [1, 4].

The singularity category (or stable derived category) of a noetherian ring R is defined
as the Verdier quotient of the bounded derived category of finitely generated R-modules
by perfect complexes. This triangulated category has been introduced by Buchweitz [2]
to study maximal Cohen–Macaulay modules, and investigated by Orlov [8] in relation to
homological mirror symmetry.

Let (R,m) be a commutative noetherian local ring. In this talk, we will first give a
structure theorem of syzygies of modules over R when m is decomposable. Applying this
to the case where m is quasi-decomposable (i.e. m/(x) is decomposable for some regular
sequence x), we obtain several classfications of subcategories, including a complete clas-
sification of the thick subcategories of the singularity category of R. This talk is based on
joint work with Saeed Nasseh [6].
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F-SIGNATURE OF CARTIER MODULES

KEVIN TUCKER

The F-signature of a local ring (R,m,k) in positive characteristic p > 0 gives a measure
of singularities by analyzing the asymptotic behavior of the number of splittings of large
iterates of the Frobenius endomorphism. Assuming for simplicity that R is a domain of
dimension d and k = kp is perfect, one decomposes

R1/pe
= R⊕ae ⊕Me

as an R-module where R ̸ | Me, yielding the maximal rank ae of a free R-module quotient
of R1/pe

for each e ∈ N. The F-signature s(R), formally introduced by Huneke-Leuscke
[HL02] after being studied implicitly by Smith-Van den Bergh [SVdB97], is then given
by

s(R) = lim
e→∞

ae

ped

and was shown to exist in full generality in [Tuc12]. Alternatively, as conjectured in
[WY04] and shown in [PT16], one can view the F-signature as the (normalized) minimal
relative Hilbert-Kunz multiplicity

s(R) = inf
I!J

eHK(I)− eHK(J)
ℓ(J/I)

over all collections of m-primary ideals I ! J. We highlight the following three important
properties of the F-signature.

(1) s(R)> 0 if and only if R is strongly F-regular [AL03].
(2) s(R)≤ 1 with equality if and only if R is regular [HL02, Yao06].
(3) p '→ s(Rp) gives a lower semi-continuous function on Spec(R) [Pol15, PT16].

Attempts have also been made to define an analogous numerical invariant with respect
to F-rationality. To that end, Hochster-Yao [HY] introduced the F-rational signature
srat(R) as the minimal relative Hilbert-Kunz multiplicity

srat(R) = inf
(I:x)=m

I parameter

(eHK(I)− eHK(I,x))

over all parameter ideals I and elements x ∈ R representing an element of the socle of
R/I. In a different direction, Sannai [San15] has defined the dual F-signature s(ωR) using
a variation on direct sum decompositions. Precisely, if be denotes the maximal number

(ωR)
1/pe ! ω⊕be

R

of direct sum copies of ωR admitting a surjection from (ωR)1/pe
, then one sets

s(ωR) = limsup
e→∞

be

ped .



Both srat(R) and s(ωR) satisfy the analogous property to (1) above: the are positive if and
only if R is F-rational. However, it is unclear if srat(R) satisfies (2) or (3). Similarly,
while (2) holds for s(ωR), it is unclear whether (3) holds – which stems from the lack of
any control over the (possible) convergence of the sequence { be

ped }.
This talk will report on work in progress with Ilya Smirnov to propose a definition

of the F-signature s(φ) of a Cartier module (M,φ), in the sense of [BB11]. A Cartier
module (M,φ) is a finitely generated R-module M, together with a structure morphism
φ : (M)1/p → M. With mild assumptions on (M,φ) and R, this invariant can be used
to detect F-regularity; moreover, suitably interpreted, it gives a lower semi-continuous
function on Spec(R). The most important example of a Cartier module comes from con-
sidering the trace (or Grothendieck dual) of Frobenius TrF : (ωR)1/p → ωR. In this case,
we refer to s(TrF) as the Cartier signature, and one may view it as a (normalized) minimal
relative Hilbert-Kunz multiplicity

s(TrF) = inf
I!J

I parameter

eHK(I)− eHK(J)
ℓ(J/I)

for any ideal J properly containing a parameter ideal I. As such, we observe the following
string of inequalities

srat(R)≥ s(TrF)≥ s(ωR)≥ s(R).
Like the dual and F-rational signatures, the Cartier signature detects F-rationality (i.e.
satisfies the analogue of (1)). Moreover, we are also able to show the Cartier signature
satisfies properties (2) and (3) as well.
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THE GONALITY OF COMPLETE INTERSECTION CURVES

BROOKE ULLERY

Let C be a projective curve. Recall that the gonality of C, gon(C), is the minimum
degree of a surjective morphism

C̃ −→ P1,

where C̃ is the normalization of C. Thus, C is rational precisely when gon(C) = 1, and,
more generally, gonality measures how far the curve is from being rational. Gonality is
a classical invariant, and there has been significant interest in bounding the gonality of
various classes of curves and characterizing the corresponding maps to P1. Specifically,
if C is embedded in projective space, it is natural to ask whether the gonality is related to
the embedding of the curve.

In the case of complete intersection curves, the codimension two and three cases are
thoroughly understood, due to theorems of Noether and Basili, respectively. Specifically,
in these cases, the gonality is computed by projection from a linear space and every min-
imal covering arises in this way.

In my talk, I will discuss recent work with James Hotchkiss. Our main result is a
generalization to higher codimension complete intersection curves. Specifically, we show
that under mild degree hypotheses, the gonality of a general complete intersection curve
C ⊂ Pn is computed by projection from an (n− 2)-dimensional linear space, and any
minimal degree branched covering of P1 arises in this way.


